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XL. A new Relation between Electricity and Light : Dielectrified
Media Birefringent. By Joux Kerg, LL.D., Mathematical
Lecturer of the Free-Church Training College, Glasgow*.

THE thought which led me to the following inquiry was
briefly this :—that if a transparent and optically isotropic

insulator were subjected properly to intense electrostatic force,
uld _act no longer a8 an 1sotropic body upon light sent
through it. Faraday was often oceupied with expectations o;

this kind ; and he has mentioned in his memoir on the Mag-
netization of Light, and elsewhere in his * Researches,” how he ex-
perimented in this very direction, upon electrolytes as well as
dielectrics, at different times and in many ways, but always
without successt. As far as T remember, I have not read or
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I Intensity-dependent refractive index

Nonlinear Optics — light-matter interactions when material’s
response is a non-linear function of the applied electric-field.

For a nonlinear material, the electric polarization field will depend
on the electric field:

P = eoxVE + eoxPEE + eox* EEE + - - -,



I Intensity-dependent refractive index

Nonlinear Optics — light-matter interactions when material’s
response is a non-linear function of the applied electric-field.

For a nonlinear material, the electric polarization field will depend
on the electric field:

P = eoxVE + eoxPEE + eox* EEE + - - -,

The i-th component for the vector P:

3 3 3
Pi —eonu E; +€OZZXW<EEk+EOZZZXuk/EEkE'+

j=1 k=1 j=1 k=1 I=1

x™: n-th order electric susceptibility
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Kerr effect: P(w) = eoxWE(w) + 3eox P |E(w)|?E(w) = eoxerE(w)
Define: xerr = XV + 3eox® |E(w)|?.

Refractive index of many materials: n = ng + ns <IE'2>

n? =1+ Xeff
no = (1 + xM)1/2
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I Tensor nature of the third order susceptibility

The most general third-order nonlinear process involves the
interaction of waves at four different frequencies:

3
Xijkl = X,S»k; (wg = w1 +wy + ws)

Isotropic media: x, y, z axes can be chosen to make calculations
as simple as possible.

Most general triclinic symmetry: 3* = 81 elements, only 21 are
non-zero

X1 = Xiiii : XXXX = YYYy = 2Z2Z (= XXYy + XyXy + XyyX)
X2 = Xjjkk : XXYY = YYZZ = ZZXX = YyXX = 2Zyy = XX2Z
X3 = Xjijk : XYXY = YZyZ = ZXZX = YXyX = ZyZy = XZXZ
X4 = Xjkkj : XYYX = YZZY = ZXXZ = YXXY = ZyyZ = XZZX
The symmetry of a structurally isotropic medium imposes the
further constraint
X1 = X2t X3+ X4



I Third order nonlinear processes

General case: applied frequencies are arbitrary
w1 + ws + w3 = wy. The polarization at wy is given by
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I Third order nonlinear processes

General case: applied frequencies are arbitrary
w1 + ws + w3 = wy. The polarization at wy is given by

) 1 o
Pi(ws) = €0 > x,(jia(wz;; wi, wa, w3)Ej(wr) Ex(w2)Ej(ws),
K

Electro-optical Kerr effect we have w =0+ 0 + w
=360y Xjj(w w)E;(0)E(0)Ey(w).
Jid
Optical Kerr effect we have wy = wy — wy + w1

A~ ~ ~

Pilwr) = Seo ) Xjhi(wns wa, —wz, wi)Ej(wa) By (wa) Ey(wn).
ki



I Electro-optical Kerr effect

Polarizations in x and y directions are

Pu(w) = Beoxjfyx(w; 0,0, w)E(0)Ex(w)
= 3eoXiE: (O)Ex()

Py(w) = Beoxjyyy (w3 0,0,w)E(0)Ey(w)
= 3eox{ £ (0)Ey(w).
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I Electro-optical Kerr effect

Polarizations in x and y directions are

Pr(w) = 3eoxigyx(w; 0,0, w)E7 (0)Ex(w)
= 3eoxiE) (0)E ( )
Py(w) = Beoxyyyy(w;
= 360XKE2( )Ey(w).
The DC field creates a refractive index difference between
the two polarizations given by
. 300 = XDE0) _ 3x3EH(0)
M —n.= 2n n
The Kerr constant K of a medium is defined by

An = n” —n; = )\0KE2(0),

W)E(0)Ey(w)

10



I Optical Kerr effect

A strong wave at frequency w, changes the refractive index of a
weak probe wave at w;. The operative term in the polarization is

R 3 R .
Px(w1) = §€ox%x(w1; wa, —wa, wi )| Ex(ws)|*Ex(wy),

which implies that the refractive index of the weak wave is
changed by
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I Optical Kerr effect

A strong wave at frequency w, changes the refractive index of a
weak probe wave at w;. The operative term in the polarization is

R 3 R .
Px(w1) = §€ox%x(w1; wa, —wa, wi )| Ex(ws)|*Ex(wy),

which implies that the refractive index of the weak wave is
changed by
~ 3X)9xl)((x1(w2)
2n(wy)n(wz)cey
An special case of the optical Kerr effect occurs when a single
beam at w = w; = wy Modifies its own refractive index

X

. 3 . .
Px(w) = zeox?’((w; w, —w, w)|Ex(w)[*Ex(w).

This implies that the refractive index is changed to

3x P~
n=n I=ny+nsl
O+<4H3C60 o+ Nal,

1t
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* Spectroscopy of liquids
x Waveplates
* Photonic and electro-optic devices
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I Applications

x Spectroscopy of liquids
x Waveplates
x Photonic and electro-optic devices
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Field-induced birefringence was generated by applying electric fields (10 kHz) to
an aqueous 0.1 vol% graphene oxide dispersion. In the same cell structure with a
1.1 vol% GO, no change was detected up to 20 V. mm~1. Shen (Nat. Mat. 2014).

12



I Magneto-optical Kerr effect

Magneto-optical Kerr effect (VIOKE): light reflected from a
magnetized material has a slightly rotated plane of polarization.

Transverse Longitudinal Polar
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I Magneto-optical Kerr effect

Magneto-optical Kerr effect (VIOKE): light reflected from a
magnetized material has a slightly rotated plane of polarization.
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It is used in materials science research in devices such as the Kerr microscope, to
investigate the magnetization structure of materials.

Thanks to its high accuracy, high temporal and spatial resolution and very fast
response, the MOKE is a powerful method to study the magnetic properties of
ultrathin and multilayer films.
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I Conclusions

x A study of different types of electro-optical effects has been
presented, trying to understand the behavior of the
interaction of light with matter when the response of the
medium is a non-linear function of the applied electric or
magnetic field.

x It has been explored in some properties of the electric
susceptibility tensor, necessary to explain the non-linear
effects, considering symmetries in isotropic media.

* The electro-optical, optical and magneto-optical Kerr effect
have many powerful applications that are already being
carried out in research.
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